This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.

Foundation Models for 3D Scenes: DINOv2 vs. CLIP for Instance Differentiation

2025/12/11 02:00

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

2.2. Semantic Scene Understanding and Instance Segmentation

f 3D scenes. This domain has been thoroughly explored using closed-set vocabulary methods, including our prior work [1], which utilizes Mask2Former [7] for image segmentation. Various studies [18, 19, 20] have adopted a similar approach to achieve object segmentation, resulting in a closed-set framework. While these methods are effective, they are constrained by the limitation of predefined object categories. Our approach employs SAM [21] to acquire segmentation masks for open-set detection. Moreover, our methodology, distinct from many existing techniques that depend heavily on extensive pre-training or fine-tuning, integrates these models to forge a more comprehensive and adaptable 3D scene representation. This emphasizes enhanced semantic understanding and spatial awareness.

\ To improve the semantic understanding of the objects detected within our images, we harness detailed feature representations using two foundational models: CLIP [9] and DINOv2 [10]. DINOv2, a Vision Transformer trained through self-supervision, recognises pixel-level correspondences between images and captures spatial hierarchies. Compared to CLIP, DINOv2 more effectively distinguishes between two distinct instances of the same object type, which poses challenges for CLIP.

\ It’s crucial to differentiate individual instances following the semantic identification of objects. Early methods employed a Region Proposal Network (RPN) to predict bounding boxes for these instances [22]. Alternatively, some strategies suggest a generalized architecture for managing panoptic segmentation [23]. In our preceding approach, we utilized the segmentation model Mask2Former [7], which employs an attention mechanism to isolate object-centric features. Recent research also tackles semantic scene understanding using open vocabularies [24], utilizing multi-view fusion and 3D convolutions to derive dense features from an open-vocabulary embedding space for precise semantic segmentation. Our current pipeline leverages Grounding DINO [25] to generate bounding boxes, which are then input into the Segment Anything Model (SAM) [21] to produce individual object masks, thus enabling instance segmentation within the scene.

\

:::info Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work.

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

MoneyGram launches stablecoin-powered app in Colombia

MoneyGram launches stablecoin-powered app in Colombia

The post MoneyGram launches stablecoin-powered app in Colombia appeared on BitcoinEthereumNews.com. MoneyGram has launched a new mobile application in Colombia that uses USD-pegged stablecoins to modernize cross-border remittances. According to an announcement on Wednesday, the app allows customers to receive money instantly into a US dollar balance backed by Circle’s USDC stablecoin, which can be stored, spent, or cashed out through MoneyGram’s global retail network. The rollout is designed to address the volatility of local currencies, particularly the Colombian peso. Built on the Stellar blockchain and supported by wallet infrastructure provider Crossmint, the app marks MoneyGram’s most significant move yet to integrate stablecoins into consumer-facing services. Colombia was selected as the first market due to its heavy reliance on inbound remittances—families in the country receive more than 22 times the amount they send abroad, according to Statista. The announcement said future expansions will target other remittance-heavy markets. MoneyGram, which has nearly 500,000 retail locations globally, has experimented with blockchain rails since partnering with the Stellar Development Foundation in 2021. It has since built cash on and off ramps for stablecoins, developed APIs for crypto integration, and incorporated stablecoins into its internal settlement processes. “This launch is the first step toward a world where every person, everywhere, has access to dollar stablecoins,” CEO Anthony Soohoo stated. The company emphasized compliance, citing decades of regulatory experience, though stablecoin oversight remains fluid. The US Congress passed the GENIUS Act earlier this year, establishing a framework for stablecoin regulation, which MoneyGram has pointed to as providing clearer guardrails. This is a developing story. This article was generated with the assistance of AI and reviewed by editor Jeffrey Albus before publication. Get the news in your inbox. Explore Blockworks newsletters: Source: https://blockworks.co/news/moneygram-stablecoin-app-colombia
Paylaş
BitcoinEthereumNews2025/09/18 07:04