DEX Screener is used by crypto traders who need access to on-chain data like trading volumes, liquidity, and token prices. This information allows them to analyze trends, monitor new listings, and make informed investment decisions. In this tutorial, I will build a DEXScreener clone from scratch, covering everything from the initial design to a functional app. We will use Streamlit, a Python framework for building full-stack apps.DEX Screener is used by crypto traders who need access to on-chain data like trading volumes, liquidity, and token prices. This information allows them to analyze trends, monitor new listings, and make informed investment decisions. In this tutorial, I will build a DEXScreener clone from scratch, covering everything from the initial design to a functional app. We will use Streamlit, a Python framework for building full-stack apps.

Building a DEXScreener Clone: A Step-by-Step Guide

2025/09/18 15:05

DEX Screener is primarily used by crypto traders who need access to on-chain data like trading volumes, liquidity, and token prices. This information allows them to analyze trends, monitor new listings, and make informed investment decisions.

In this tutorial, I will build a DEXScreener clone from scratch, covering everything from the initial design to a functional app with DEX Screener's core features. We will use Streamlit, a Python framework for building full-stack apps, and fetch real-time data using CoinGecko's On-Chain API free plan, which provides extensive data coverage for over 200 chains and 1,600+ DEXs.

Pre-Requisite

Before we start building the clone, please make sure you have

  • Python 3.8+: Ensure it's installed (python.org).
  • Basic Knowledge: Familiarity with APIs and DEXScreener.

With this, you will be able to build the clone easily.

Design Thinking

I will first plan out the app's structure for covering basic DEXScreener's functionality with minimal complexity.

This is DEXScreener's Homepage, which shows the market activities.

The core components of the application are

  1. Main Page: Displays trending and new liquidity pools in a table with key stats (token name, price, volume, liquidity).
  2. Sidebar Navigation and Filtering: A sidebar lists available chains and DEXs, allowing users to view the top pools for their selection. The main view will also include a simple form to filter these pools by volume and liquidity.
  3. Search: Allows users to find pools by name or contract address..

When clicking on any of the pools, users can view in-depth stats for a selected pool, including liquidity volume, price changes, and OHLCV charts.

\ Here's the design template for structuring the components on our clone application.

With this in place, the next step is to set up the project environment and prepare the basic version on which we can build.

Setup Instructions

I will be using the Pipenv python dependency manager for virtual environments. Install it globally

pip install pipenv

Now, please follow the steps for complete setup.

Step-1 : Set Up the Project Directory

Create a project folder and initialize the pipenv shell to manage dependencies in a virtual environment.

mkdir dexscreener-clone  cd dexscreener-clone  pipenv --python 3.8  # Use your Latest Python version after checking python --version 

Step-2: Signup for CoinGecko's API Keys

Signup at CoinGecko and generate an API key. After signing in, Navigate to the Developer Dashboard.

Click on +Add New Key and label your key (for example: testing, production, or tutorial). Copy the generated key and store it safely, as this is what you'll use in your code to authenticate API requests.

CoinGecko provides separate documentation for Demo and Paid APIs:

  • Demo Plan API Documentation (free, limited usage): CoinGecko Demo API Docs
  • Paid Plan API Documentation (higher limits, advanced features): CoinGecko Paid Plan API Docs

This tutorial is based on the Demo API, but the concepts remain the same for Paid plans. Only the base URL and usage limits differ.

All Demo API requests are routed through the following base URL:

https://api.coingecko.com/api/v3

Authentication is done by attaching your Demo API key in the request header. Specifically, you'll use the header field:

x-cg-demo-api-key: <YOUR-DEMO-API-KEY>

The easiest way to test your connection is by calling the /ping endpoint, which confirms that the API is responsive and your key is valid.

Here's an example for the Demo API ping:

curl --request GET    --url https://api.coingecko.com/api/v3/ping    --header 'accept: application/json'    --header 'x-cg-demo-api-key: CG-your-api-key' 

Expected Response:

{  "gecko_says": "(V3) To the Moon!"  } 

If you see this response, congratulations! You've successfully connected to the CoinGecko Demo API. From here, you can start exploring real data endpoints like market prices, token metadata, and liquidity pools.

Step-3: Install Dependencies

First of all, activate the virtual environment

pipenv shell

Now, install Streamlit and the required libraries using Pipenv. These include requests for API calls, pandas for data handling, plotly for charts, and python-dotenv for environment variables.

pipenv install streamlit requests pandas plotly python-dotenv

Store your API key securely in a .env file to prevent hardcoding.

echo "CG_DEMO_API_KEY=your_demo_api_key_here" > .env

Replace yourdemoapikeyhere with your CoinGecko API key. The .env file will be loaded by python-dotenv in your code.

Building the Application

Now that the setup is complete, let us build the core functionality of our DEXScreener clone. We will start by creating the main script file and implement the features step-by-step.

Create a new file dexscreener_clone.py

touch dexscreener_clone.py

Now, import the required libraries and environment secrets.

import os  import requests  import streamlit as st  import pandas as pd  import plotly.graph_objects as go from dotenv  import load_dotenv  load_dotenv()  BASE_URL = "https://api.coingecko.com/api/v3/"  API_KEY = os.getenv("CG_DEMO_API_KEY")  # Use your key from .env 

This loads the environment variables and sets up the base URL for the API.

Now, we will write an API fetch helper function for calling CoinGecko's APIs with their endpoints and required parameters.

\

def fetch_api(endpoint, params=None):    """Helper to fetch from CoinGecko API"""    if params is None:      params = {}    params["x_cg_demo_api_key"] = API_KEY    response = requests.get(f"{BASE_URL}/{endpoint}", params=params)    if response.status_code != 200:      st.error(f"API Error: {response.json().get('error', 'Unknown error')}")      return None    return response.json() 

This function handles API calls with error display in Streamlit.

Now, let us add the Navigation Sidebar on our application which will show all the available networks and the DEXs as given by CoinGecko API's data.

``` 

javascript ---------------- Sidebar Navigation ---------------- st.sidebar.title("Navigation")

networksdata = fetchapi("onchain/networks") selectednetwork = None selecteddex = None

if networksdata: networks = [n["id"] for n in networksdata["data"]] selected_network = st.sidebar.selectbox("Select Network", networks)

if selectednetwork dexesdata = fetchapi(f"onchain/networks/{selectednetwork}/dexes") if dexesdata: dexes = [d["id"] for d in dexesdata["data"]] selected_dex = st.sidebar.selectbox("Select DEX", dexes)

\ This code fetches the available networks and DEXs from the CoinGecko API using the *[/onchain/networks](https://docs.coingecko.com/v3.0.1/reference/networks-list)* and *[/onchain/networks/{selected_network}/dexes](https://docs.coingecko.com/v3.0.1/reference/dexes-list)* endpoints, respectively. The results are then used to populate the dropdown selection menus in the sidebar.  Now run the Streamlit app using the following command to check what it looks like.  `streamlit run dexscreener_clone.py`  Open <http://localhost:8501> in your browser. It will look just like this.   ![](https://cdn.hackernoon.com/images/gOION3UpzLYB2bAzKFMIXwcmdD03-3n6338s.png)  This fetches the networks and DEXs from the  **Networks Endpoint**: *onchain/networks*  **DEX Endpoint**: *onchain/networks/{selected_network}/dexes*  endpoints and puts them as available options on the input dropdown.  DEX Screener highlights **trending pools** across multiple chains to help traders quickly discover new opportunities. These pools are usually the ones with sudden spikes in activity or new token launches or rapid liquidity growth.  To replicate this feature in our clone, I have used *[onchain/networks/trending_pools](https://docs.coingecko.com/v3.0.1/reference/trending-pools-list)*  endpoint. It returns the most active and popular pools. 

javascript --------------- Trending Pools Section ---------------- st.subheader("🔥 Trending Pools Across Networks") trendingdata = fetchapi("onchain/networks/trending_pools")

if trendingdata: trendingpools = trendingdata.get("data", []) if trendingpools: trendingdf = pd.DataFrame([p["attributes"] for p in trendingpools])

# Normalize nested fields trending_df["volume_usd_24h"] =  

trendingdf["volumeusd"].apply( lambda x: x.get("h24") if isinstance(x, dict) else x ) trendingdf["liquidityusd"] = trendingdf["reservein_usd"].apply( lambda x: x.get("value") if isinstance(x, dict) else x )

trending_df["volume_usd_24h"] = pd.to_numeric(trending_df["volume_usd_24h"], errors="coerce").fillna(0) trending_df["liquidity_usd"] = pd.to_numeric(trending_df["liquidity_usd"], errors="coerce").fillna(0)  st.dataframe(     trending_df[["name", "base_token_price_usd", "liquidity_usd", "volume_usd_24h"]].head(10) ) 

else: st.info("No trending pools found at the moment.") else: st.warning("Could not fetch trending pools right now.")

Here is an example of how the data will be displayed in the frontend of our Streamlit app:   ![](https://cdn.hackernoon.com/images/gOION3UpzLYB2bAzKFMIXwcmdD03-apb33w0.gif.webp)  Now let us build a basic filtering option on a collapsible section. 

javascript

---------------- Main Screen ----------------

st.title("DEXScreener Clone")

with st.expander("Search & Filter Options"): minvolume = st.numberinput("Min 24h Volume (USD)", minvalue=0) minliquidity = st.numberinput("Min Liquidity (USD)", minvalue=0) apply_filters = st.button("Apply Filters")

 ![](https://cdn.hackernoon.com/images/gOION3UpzLYB2bAzKFMIXwcmdD03-59733ay.jpeg)  The *[onchain/search/pools](https://docs.coingecko.com/v3.0.1/reference/search-pools)*  endpoint allows us to search globally for any token pool based on the token name or contract address. 

javascript ---------------- Global Search Results (Outside Expander) ----------------

 

javascript if runglobalsearch and globalsearchterm: searchresults = fetchapi("onchain/search/pools", params={"query": globalsearchterm})

if searchresults and "data" in searchresults: pools = searchresults["data"] if pools: # Extract pool info rows = [] for pool in pools: attr = pool["attributes"] rows.append({ "Pool Name": attr.get("name"), "Base Token Price (USD)": attr.get("basetokenpriceusd"), "Quote Token Price (USD)": attr.get("quotetokenpriceusd"), "Pool Address": attr.get("address"), "FDV (USD)": attr.get("fdvusd"), "Volume 24h (USD)": attr.get("volumeusd", {}).get("h24"), "Created At": attr.get("poolcreated_at") })

    search_df = pd.DataFrame(rows)     st.subheader("Global Search Results")     st.dataframe(search_df) else:     st.info("No pools found for that search term.") 

else: st.warning("Could not fetch search results right now.")

Now we can put a token of our choice in the search bar and we will get all the matching items as per that term.   ![](https://cdn.hackernoon.com/images/gOION3UpzLYB2bAzKFMIXwcmdD03-lp833o2.jpeg)  Now based on the selected network and DEX and also the filters we will display top pools.  For that I will make a call to *[onchain/networks/{selected_network}/dexes/{selected_dex}/pools](https://docs.coingecko.com/v3.0.1/reference/top-pools-dex)*  endpoint. 

javascript Show Top-10 Pools for selected network + DEX

 

javascript if selectednetwork and selecteddex: poolsdata = fetchapi(f"onchain/networks/{selectednetwork}/dexes/{selecteddex}/pools") if poolsdata: pools = poolsdata.get("data", []) df = pd.DataFrame([p["attributes"] for p in pools])

🔹 Flatten nested dict fields into numeric columns

if "volume_usd" in df.columns:     df["volume_usd_24h"] = df["volume_usd"].apply(         lambda x: x.get("h24") if isinstance(x, dict) else x     ) else:     df["volume_usd_24h"] = 0  if "reserve_in_usd" in df.columns:     df["liquidity_usd"] = df["reserve_in_usd"].apply(         lambda x: x.get("value") if isinstance(x, dict) else x     ) else:     df["liquidity_usd"] = 0  # ✅ Convert to numeric (fix TypeError issue) df["volume_usd_24h"] = pd.to_numeric(df["volume_usd_24h"], errors="coerce").fillna(0) df["liquidity_usd"] = pd.to_numeric(df["liquidity_usd"], errors="coerce").fillna(0)  # Apply filters if set if apply_filters:     df = df[         (df["volume_usd_24h"] >= min_volume) &         (df["liquidity_usd"] >= min_liquidity)     ]  st.subheader("Top-10 Tokens & Stats") top_df = df[["name", "base_token_price_usd", "liquidity_usd", "volume_usd_24h"]].head(10) st.dataframe(top_df) 
*The JSON response includes attributes like* `name`*,* `base_token_price_usd`*, and* `volume_usd` *across multiple timeframes (h1, h6, h24). For this clone, I will display the 24-hour volume (*`h24`*) and the total locked liquidity, which is available under the* `reserve_in_usd` *parameter.*   ![](https://cdn.hackernoon.com/images/gOION3UpzLYB2bAzKFMIXwcmdD03-ksd33p2.gif.webp)  This fetches and displays top 10 pools from the selected DEX, additionally applying manual filters on the DataFrame.  Now, I will build the most interesting part of the application, which is when you select any token, you should be able to see the OHLCV graphs and the token details. OHLCV stands for Open (starting price in a period), High (peak price), Low (bottom price), Close (ending price), and Volume (trading amount). 
# Select token token_choice = st.selectbox("Select a token to view details", top_df["name"]) token_row = df[df["name"] == token_choice].iloc[0]  # ---------------- Token Detail View ---------------- # st.header(token_choice)  pool_address = token_row["address"]  # Fetch OHLCV Data ohlcv_data = fetch_api(     f"onchain/networks/{selected_network}/pools/{pool_address}/ohlcv/day" ) if ohlcv_data:     ohlcv = ohlcv_data["data"]["attributes"]["ohlcv_list"]      # Fix: include 6 columns (timestamp, open, high, low, close, volume)     ohlcv_df = pd.DataFrame(         ohlcv,         columns=["timestamp", "open", "high", "low", "close", "volume"]     )     ohlcv_df["date"] = pd.to_datetime(ohlcv_df["timestamp"], unit="s")      # Candlestick + Volume subplot     fig = go.Figure()      # Price candles     fig.add_trace(go.Candlestick(         x=ohlcv_df["date"],         open=ohlcv_df["open"],         high=ohlcv_df["high"],         low=ohlcv_df["low"],         close=ohlcv_df["close"],         name="Price"     ))      # Volume bars     fig.add_trace(go.Bar(         x=ohlcv_df["date"],         y=ohlcv_df["volume"],         name="Volume",         marker_color="lightblue",         opacity=0.5,         yaxis="y2"     ))      # Layout with dual y-axis     fig.update_layout(         title=f"{token_choice} - OHLCV Chart",         xaxis=dict(title="Date", rangeslider=dict(visible=False)),         yaxis=dict(title="Price (USD)"),         yaxis2=dict(             title="Volume",             overlaying="y",             side="right",             showgrid=False         ),         legend=dict(orienta 

```

We can select the token and fetch the OHLCV data and display the candlestick chart with volume overlay and basic statistics about that coin.

The onchain/networks/{selectednetwork}/pools/{pooladdress}/ohlcv/{period} endpoint gives the historical price action data. The {period} parameter lets you choose "minute", "hour", "day", etc. I am using "day" for daily summaries, but you could swap to "hour" for finer detail (finer periods mean more data points, so watch your API calls).

With this implementation, your clone is ready to run. Test it by selecting Ethereum and Uniswap V3, applying a $10,000 min volume filter, picking a pool like ETH/USDC, and watching the chart come alive.

API Optimization and Performance

CoinGecko's Demo API enforces strict limits of 30 calls per minute and 10,000 calls per month. Thus, we would need to stay below the threshold for the project.

One way to do this is cache the response for calls that won't change every time. For example, Network lists and the DEX information rarely changes and we can cache it for hours, while token prices and volume data should be cached for short periods like 5-10 minutes for reasonable accuracy.

For improving the performance, there could be pagination where we only fetch a subset of results which will be displayed. Large datasets can quickly degrade the browser performance.

Wrap-Up

The entire DEXScreener clone was built with just a concise set of Python code that delivers core features like on-chain pool data, filtering, and interactive candlestick charts. In under 200 lines it provides crypto traders with valuable insights into decentralized exchange activity.

The CoinGecko On-Chain API makes building applications like this straightforward. Endpoints like /onchain/networks and /onchain/pools/ohlcv/{period} deliver structured JSON data, providing easy access to network lists, pool statistics, and historical price data with minimal configuration.

While this guide covers the basics, the CoinGecko API provides all the necessary endpoints to build a fully-featured DEXScreener clone. For example, you could enhance your app by:

  • Getting token metadata like logos via the /onchain/networks/{network}/tokens/{address}/info endpoint.
  • Displaying top token holders and recent trades using the /onchain/networks/{network}/tokens/{address}/topholders and /onchain/networks/{network}/tokens/{tokenaddress}/trades endpoints.

These additional data points are highly valuable for traders and analysts exploring on-chain activity.

Streamlit also made the development process a lot smoother so I was able to create a responsive web interface using pure Python. This approach makes sure that backend engineers can focus on functionality while Streamlit handles the presentation layer effortlessly.

Here's the full working code you can use and run directly on your system.

The DEXScreener clone is now ready for use. You can deploy it on Streamlit Community Cloud, enhance it and continue exploring these tools to unlock even more possibilities for building your next Web3 application.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Disney Pockets $2.2 Billion For Filming Outside America

Disney Pockets $2.2 Billion For Filming Outside America

The post Disney Pockets $2.2 Billion For Filming Outside America appeared on BitcoinEthereumNews.com. Disney has made $2.2 billion from filming productions like ‘Avengers: Endgame’ in the U.K. ©Marvel Studios 2018 Disney has been handed $2.2 billion by the government of the United Kingdom over the past 15 years in return for filming movies and streaming shows in the country according to analysis of more than 400 company filings Disney is believed to be the biggest single beneficiary of the Audio-Visual Expenditure Credit (AVEC) in the U.K. which gives studios a cash reimbursement of up to 25.5% of the money they spend there. The generous fiscal incentives have attracted all of the major Hollywood studios to the U.K. and the country has reeled in the returns from it. Data from the British Film Institute (BFI) shows that foreign studios contributed around 87% of the $2.2 billion (£1.6 billion) spent on making films in the U.K. last year. It is a 7.6% increase on the sum spent in 2019 and is in stark contrast to the picture in the United States. According to permit issuing office FilmLA, the number of on-location shooting days in Los Angeles fell 35.7% from 2019 to 2024 making it the second-least productive year since 1995 aside from 2020 when it was the height of the pandemic. The outlook hasn’t improved since then with FilmLA’s latest data showing that between April and June this year there was a 6.2% drop in shooting days on the same period a year ago. It followed a 22.4% decline in the first quarter with FilmLA noting that “each drop reflected the impact of global production cutbacks and California’s ongoing loss of work to rival territories.” The one-two punch of the pandemic followed by the 2023 SAG-AFTRA strikes put Hollywood on the ropes just as the U.K. began drafting a plan to improve its fiscal incentives…
Share
2025/09/18 07:20
Share
BullZilla Leads Best Crypto Presales To Join Now

BullZilla Leads Best Crypto Presales To Join Now

The post BullZilla Leads Best Crypto Presales To Join Now appeared on BitcoinEthereumNews.com. Crypto News Discover how BullZilla and top alt-coins lead the best crypto presales to join now , explore ROI and presale potential. Have you ever wondered which alt-coin might ignite your portfolio next? Consider Sui, a high-speed Layer-1 blockchain catching real attention. In the same breath, the concept of the best crypto presales to join now is gaining serious traction across investor circles. As early entry becomes more critical, projects offering structured presale stages and transparent tokenomics stand out. In that context, the project BullZilla (ticker BZIL) steps up , combining aggressive mechanics, a staking furnace and scarcity engine that positions it among the best crypto presales to join now. Below we examine six coins,with BullZilla in focus,each representing unique opportunities for investors seeking that early-stage edge. BullZilla (BZIL): The flagship Presale to Buy Now The BullZilla presale is currently in Stage 7 (Bag Signal Activated), Phase D at a price of $0.00018573. Over $960 k has been raised, with more than 3,100 token holders and over 31 billion tokens sold. That already signals traction. Bullzilla is among the best crypto presales to join now. From Stage 7D to an expected listing price of $0.00527, the current ROI potential is approx. 2,738.21 %. For the earliest joiners, ROI until Stage 7D reached 3,130.08 %. With an upcoming price move from $0.00018573 to $0.0001924 (Stage 8A , a 3.59 % increase), momentum is building. Projected upside: What happens if you invest $3,000 now? If an investor allocates $3,000 at the current presale price of $0.00018573, they would acquire approximately 16.14 million BZIL tokens. If the token lists at $0.00527, that stake would be worth around $85,000, implying a near 28× return on investment. Given the built-in scarcity mechanism and staking reward features of BullZilla, this scenario highlights why this presale is…
Share
2025/10/24 04:19
Share