You’ll train a simple MLP on MNIST using TensorFlow Core plus DTensor in a data-parallel setup: create a one-dimensional mesh (“batch”), keep model weights replicated (DVariables), shard the global batch across devices via pack/repack, and run a standard loop with tf.GradientTape, custom Adam, and accuracy/loss metrics. The code shows how mesh/layout choices propagate through ops, how to write DTensor-aware layers, and how to evaluate/plot results. Saving is limited today—DTensor models must be fully replicated to export, and saved models lose DTensor annotations.You’ll train a simple MLP on MNIST using TensorFlow Core plus DTensor in a data-parallel setup: create a one-dimensional mesh (“batch”), keep model weights replicated (DVariables), shard the global batch across devices via pack/repack, and run a standard loop with tf.GradientTape, custom Adam, and accuracy/loss metrics. The code shows how mesh/layout choices propagate through ops, how to write DTensor-aware layers, and how to evaluate/plot results. Saving is limited today—DTensor models must be fully replicated to export, and saved models lose DTensor annotations.

Data Parallel MNIST with DTensor and TensorFlow Core

2025/09/09 16:00

Content Overview

  • Introduction
  • Overview of data parallel training with DTensor
  • Setup
  • The MNIST Dataset
  • Preprocessing the data
  • Build the MLP
  • The dense layer
  • The MLP sequential model
  • Training metrics
  • Optimizer
  • Data packing
  • Training
  • Performance evaluation
  • Saving your model
  • Conclusion

\ \ \

Introduction

This notebook uses the TensorFlow Core low-level APIs and DTensor to demonstrate a data-parallel distributed training example.

Visit the Core APIs overview to learn more about TensorFlow Core and its intended use cases. Refer to the DTensor Overview guide and Distributed Training with DTensors tutorial to learn more about DTensor.

This example uses the same model and optimizer as those shown in the Multilayer Perceptrons tutorial. See this tutorial first to get comfortable with writing an end-to-end machine learning workflow with the Core APIs.

\

:::tip Note: DTensor is still an experimental TensorFlow API which means that its features are available for testing, and it is intended for use in test environments only.

:::

\

Overview of data parallel training with DTensor

Before building an MLP that supports distribution, take a moment to explore the fundamentals of DTensor for data parallel training.

DTensor allows you to run distributed training across devices to improve efficiency, reliability and scalability. DTensor distributes the program and tensors according to the sharding directives through a procedure called Single program, multiple data (SPMD) expansion. A variable of a DTensor aware layer is created as dtensor.DVariable, and the constructors of DTensor aware layer objects take additional Layout inputs in addition to the usual layer parameters.

The main ideas for data parallel training are as follows:

  • Model variables are replicated on N devices each.
  • A global batch is split into N per-replica batches.
  • Each per-replica batch is trained on the replica device.
  • The gradient is reduced before weight up data is collectively performed on all replicas.
  • Data parallel training provides nearly linear speed with respect to the number of devices

Setup

DTensor is part of TensorFlow 2.9.0 release.

\

#!pip install --quiet --upgrade --pre tensorflow 

\

import matplotlib from matplotlib import pyplot as plt # Preset Matplotlib figure sizes. matplotlib.rcParams['figure.figsize'] = [9, 6] 

\

import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.experimental import dtensor print(tf.__version__) # Set random seed for reproducible results  tf.random.set_seed(22) 

\

2024-08-15 02:49:40.914029: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-08-15 02:49:40.935518: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-08-15 02:49:40.941702: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2.17.0 

Configure 8 virtual CPUs for this experiment. DTensor can also be used with GPU or TPU devices. Given that this notebook uses virtual devices, the speedup gained from distributed training is not noticeable.

\

def configure_virtual_cpus(ncpu):   phy_devices = tf.config.list_physical_devices('CPU')   tf.config.set_logical_device_configuration(phy_devices[0], [         tf.config.LogicalDeviceConfiguration(),     ] * ncpu)  configure_virtual_cpus(8)  DEVICES = [f'CPU:{i}' for i in range(8)] devices = tf.config.list_logical_devices('CPU') device_names = [d.name for d in devices] device_names 

\

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1723690183.661893  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.665603  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.669301  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.672556  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.683679  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.687589  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.691101  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.694059  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.696961  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.700515  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.704018  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690183.706976  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.934382  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.936519  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.938569  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.940700  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.942765  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.944750  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.946705  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.948674  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.950629  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.952626  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.954710  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.956738  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.995780  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.997864  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690184.999851  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.001859  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See mo ['/device:CPU:0',  '/device:CPU:1',  '/device:CPU:2',  '/device:CPU:3',  '/device:CPU:4',  '/device:CPU:5',  '/device:CPU:6',  '/device:CPU:7'] re at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.003740  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.005715  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.007659  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.009659  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.011546  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.014055  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.016445  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723690185.018866  157397 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 

The MNIST Dataset

The dataset is available from TensorFlow Datasets. Split the data into training and testing sets. Only use 5000 examples for training and testing to save time.

\

train_data, test_data = tfds.load("mnist", split=['train[:5000]', 'test[:5000]'], batch_size=128, as_supervised=True) 

Preprocessing the data

Preprocess the data by reshaping it to be 2-dimensional and by rescaling it to fit into the unit interval, [0,1].

\

def preprocess(x, y):   # Reshaping the data   x = tf.reshape(x, shape=[-1, 784])   # Rescaling the data   x = x/255   return x, y  train_data, test_data = train_data.map(preprocess), test_data.map(preprocess) 

Build the MLP

Build an MLP model with DTensor aware layers.

The dense layer

Start by creating a dense layer module that supports DTensor. The dtensor.call_with_layout function can be used to call a function that takes in a DTensor input and produces a DTensor output. This is useful for initializing a DTensor variable, dtensor.DVariable, with a TensorFlow supported function.

\

class DenseLayer(tf.Module):    def __init__(self, in_dim, out_dim, weight_layout, activation=tf.identity):     super().__init__()     # Initialize dimensions and the activation function     self.in_dim, self.out_dim = in_dim, out_dim     self.activation = activation      # Initialize the DTensor weights using the Xavier scheme     uniform_initializer = tf.function(tf.random.stateless_uniform)     xavier_lim = tf.sqrt(6.)/tf.sqrt(tf.cast(self.in_dim + self.out_dim, tf.float32))     self.w = dtensor.DVariable(       dtensor.call_with_layout(           uniform_initializer, weight_layout,           shape=(self.in_dim, self.out_dim), seed=(22, 23),           minval=-xavier_lim, maxval=xavier_lim))      # Initialize the bias with the zeros     bias_layout = weight_layout.delete([0])     self.b = dtensor.DVariable(       dtensor.call_with_layout(tf.zeros, bias_layout, shape=[out_dim]))    def __call__(self, x):     # Compute the forward pass     z = tf.add(tf.matmul(x, self.w), self.b)     return self.activation(z) 

The MLP sequential model

Now create an MLP module that executes the dense layers sequentially.

\

class MLP(tf.Module):    def __init__(self, layers):     self.layers = layers    def __call__(self, x, preds=False):      # Execute the model's layers sequentially     for layer in self.layers:       x = layer(x)     return x 

Performing "data-parallel" training with DTensor is equivalent to tf.distribute.MirroredStrategy. To do this each device will run the same model on a shard of the data batch. So you'll need the following:

  • dtensor.Mesh with a single "batch" dimension
  • dtensor.Layout for all the weights that replicates them across the mesh (using dtensor.UNSHARDED for each axis)
  • dtensor.Layout for the data that splits the batch dimension across the mesh

Create a DTensor mesh that consists of a single batch dimension, where each device becomes a replica that receives a shard from the global batch. Use this mesh to instantiate an MLP mode with the following architecture:

Forward Pass: ReLU(784 x 700) x ReLU(700 x 500) x Softmax(500 x 10)

\

mesh = dtensor.create_mesh([("batch", 8)], devices=DEVICES) weight_layout = dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh)  input_size = 784 hidden_layer_1_size = 700 hidden_layer_2_size = 500 hidden_layer_2_size = 10  mlp_model = MLP([     DenseLayer(in_dim=input_size, out_dim=hidden_layer_1_size,                 weight_layout=weight_layout,                activation=tf.nn.relu),     DenseLayer(in_dim=hidden_layer_1_size , out_dim=hidden_layer_2_size,                weight_layout=weight_layout,                activation=tf.nn.relu),     DenseLayer(in_dim=hidden_layer_2_size, out_dim=hidden_layer_2_size,                 weight_layout=weight_layout)]) 

Training metrics

Use the cross-entropy loss function and accuracy metric for training.

\

def cross_entropy_loss(y_pred, y):   # Compute cross entropy loss with a sparse operation   sparse_ce = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=y_pred)   return tf.reduce_mean(sparse_ce)  def accuracy(y_pred, y):   # Compute accuracy after extracting class predictions   class_preds = tf.argmax(y_pred, axis=1)   is_equal = tf.equal(y, class_preds)   return tf.reduce_mean(tf.cast(is_equal, tf.float32)) 

Optimizer

Using an optimizer can result in significantly faster convergence compared to standard gradient descent. The Adam optimizer is implemented below and has been configured to be compatible with DTensor. In order to use Keras optimizers with DTensor, refer to the experimentaltf.keras.dtensor.experimental.optimizers module.

\

class Adam(tf.Module):      def __init__(self, model_vars, learning_rate=1e-3, beta_1=0.9, beta_2=0.999, ep=1e-7):       # Initialize optimizer parameters and variable slots       self.model_vars = model_vars       self.beta_1 = beta_1       self.beta_2 = beta_2       self.learning_rate = learning_rate       self.ep = ep       self.t = 1.       self.v_dvar, self.s_dvar = [], []       # Initialize optimizer variable slots       for var in model_vars:         v = dtensor.DVariable(dtensor.call_with_layout(tf.zeros, var.layout, shape=var.shape))         s = dtensor.DVariable(dtensor.call_with_layout(tf.zeros, var.layout, shape=var.shape))         self.v_dvar.append(v)         self.s_dvar.append(s)      def apply_gradients(self, grads):       # Update the model variables given their gradients       for i, (d_var, var) in enumerate(zip(grads, self.model_vars)):         self.v_dvar[i].assign(self.beta_1*self.v_dvar[i] + (1-self.beta_1)*d_var)         self.s_dvar[i].assign(self.beta_2*self.s_dvar[i] + (1-self.beta_2)*tf.square(d_var))         v_dvar_bc = self.v_dvar[i]/(1-(self.beta_1**self.t))         s_dvar_bc = self.s_dvar[i]/(1-(self.beta_2**self.t))         var.assign_sub(self.learning_rate*(v_dvar_bc/(tf.sqrt(s_dvar_bc) + self.ep)))       self.t += 1.       return 

Data packing

Start by writing a helper function for transferring data to the device. This function should use dtensor.pack to send (and only send) the shard of the global batch that is intended for a replica to the device backing the replica. For simplicity, assume a single-client application.

Next, write a function that uses this helper function to pack the training data batches into DTensors sharded along the batch (first) axis. This ensures that DTensor evenly distributes the training data to the 'batch' mesh dimension. Note that in DTensor, the batch size always refers to the global batch size; therefore, the batch size should be chosen such that it can be divided evenly by the size of the batch mesh dimension. Additional DTensor APIs to simplify tf.data integration are planned, so please stay tuned.

\

def repack_local_tensor(x, layout):   # Repacks a local Tensor-like to a DTensor with layout   # This function assumes a single-client application   x = tf.convert_to_tensor(x)   sharded_dims = []    # For every sharded dimension, use tf.split to split the along the dimension.   # The result is a nested list of split-tensors in queue[0].   queue = [x]   for axis, dim in enumerate(layout.sharding_specs):     if dim == dtensor.UNSHARDED:       continue     num_splits = layout.shape[axis]     queue = tf.nest.map_structure(lambda x: tf.split(x, num_splits, axis=axis), queue)     sharded_dims.append(dim)    # Now you can build the list of component tensors by looking up the location in   # the nested list of split-tensors created in queue[0].   components = []   for locations in layout.mesh.local_device_locations():     t = queue[0]     for dim in sharded_dims:       split_index = locations[dim]  # Only valid on single-client mesh.       t = t[split_index]     components.append(t)    return dtensor.pack(components, layout)  def repack_batch(x, y, mesh):   # Pack training data batches into DTensors along the batch axis   x = repack_local_tensor(x, layout=dtensor.Layout(['batch', dtensor.UNSHARDED], mesh))   y = repack_local_tensor(y, layout=dtensor.Layout(['batch'], mesh))   return x, y 

Training

Write a traceable function that executes a single training step given a batch of data. This function does not require any special DTensor annotations. Also write a function that executes a test step and returns the appropriate performance metrics.

\

@tf.function def train_step(model, x_batch, y_batch, loss, metric, optimizer):   # Execute a single training step   with tf.GradientTape() as tape:     y_pred = model(x_batch)     batch_loss = loss(y_pred, y_batch)   # Compute gradients and update the model's parameters   grads = tape.gradient(batch_loss, model.trainable_variables)   optimizer.apply_gradients(grads)   # Return batch loss and accuracy   batch_acc = metric(y_pred, y_batch)   return batch_loss, batch_acc  @tf.function def test_step(model, x_batch, y_batch, loss, metric):   # Execute a single testing step   y_pred = model(x_batch)   batch_loss = loss(y_pred, y_batch)   batch_acc = metric(y_pred, y_batch)   return batch_loss, batch_acc 

Now, train the MLP model for 3 epochs with a batch size of 128.

\

# Initialize the training loop parameters and structures epochs = 3 batch_size = 128 train_losses, test_losses = [], [] train_accs, test_accs = [], [] optimizer = Adam(mlp_model.trainable_variables)  # Format training loop for epoch in range(epochs):   batch_losses_train, batch_accs_train = [], []   batch_losses_test, batch_accs_test = [], []    # Iterate through training data   for x_batch, y_batch in train_data:     x_batch, y_batch = repack_batch(x_batch, y_batch, mesh)     batch_loss, batch_acc = train_step(mlp_model, x_batch, y_batch, cross_entropy_loss, accuracy, optimizer)    # Keep track of batch-level training performance     batch_losses_train.append(batch_loss)     batch_accs_train.append(batch_acc)    # Iterate through testing data   for x_batch, y_batch in test_data:     x_batch, y_batch = repack_batch(x_batch, y_batch, mesh)     batch_loss, batch_acc = test_step(mlp_model, x_batch, y_batch, cross_entropy_loss, accuracy)     # Keep track of batch-level testing     batch_losses_test.append(batch_loss)     batch_accs_test.append(batch_acc)  # Keep track of epoch-level model performance   train_loss, train_acc = tf.reduce_mean(batch_losses_train), tf.reduce_mean(batch_accs_train)   test_loss, test_acc = tf.reduce_mean(batch_losses_test), tf.reduce_mean(batch_accs_test)   train_losses.append(train_loss)   train_accs.append(train_acc)   test_losses.append(test_loss)   test_accs.append(test_acc)   print(f"Epoch: {epoch}")   print(f"Training loss: {train_loss.numpy():.3f}, Training accuracy: {train_acc.numpy():.3f}")   print(f"Testing loss: {test_loss.numpy():.3f}, Testing accuracy: {test_acc.numpy():.3f}") 

\

Epoch: 0 Training loss: 1.850, Training accuracy: 0.343 Testing loss: 1.375, Testing accuracy: 0.504 Epoch: 1 Training loss: 1.028, Training accuracy: 0.674 Testing loss: 0.744, Testing accuracy: 0.782 Epoch: 2 Training loss: 0.578, Training accuracy: 0.839 Testing loss: 0.486, Testing accuracy: 0.869 

Performance evaluation

Start by writing a plotting function to visualize the model's loss and accuracy during training.

\

def plot_metrics(train_metric, test_metric, metric_type):   # Visualize metrics vs training Epochs   plt.figure()   plt.plot(range(len(train_metric)), train_metric, label = f"Training {metric_type}")   plt.plot(range(len(test_metric)), test_metric, label = f"Testing {metric_type}")   plt.xlabel("Epochs")   plt.ylabel(metric_type)   plt.legend()   plt.title(f"{metric_type} vs Training Epochs"); 

\

plot_metrics(train_losses, test_losses, "Cross entropy loss") 

\

\

plot_metrics(train_accs, test_accs, "Accuracy") 

\

Saving your model

The integration of tf.saved_model and DTensor is still under development. As of TensorFlow 2.9.0, tf.saved_model only accepts DTensor models with fully replicated variables. As a workaround, you can convert a DTensor model to a fully replicated one by reloading a checkpoint. However, after a model is saved, all DTensor annotations are lost and the saved signatures can only be used with regular Tensors. This tutorial will be updated to showcase the integration once it is solidified.

Conclusion

This notebook provided an overview of distributed training with DTensor and the TensorFlow Core APIs. Here are a few more tips that may help:

  • The TensorFlow Core APIs can be used to build highly-configurable machine learning workflows with support for distributed training.
  • The DTensor concepts guide and Distributed training with DTensors tutorial contain the most up-to-date information about DTensor and its integrations.

For more examples of using the TensorFlow Core APIs, check out the guide. If you want to learn more about loading and preparing data, see the tutorials on image data loading or CSV data loading.

\n

\ \

:::info Originally published on the TensorFlow website, this article appears here under a new headline and is licensed under CC BY 4.0. Code samples shared under the Apache 2.0 License.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BitMine koopt $44 miljoen aan ETH

BitMine koopt $44 miljoen aan ETH

De grootste Ethereum (ETH) treasury ter wereld, BitMine Immersion Technologies, heeft weer toegeslagen op de crypto markt. Uit on-chain data blijkt dat BitMine, ook bekend onder het ticker symbool BMNR, voor $44 miljoen aan ETH munten heeft gekocht. Wat betekent dit voor de grootste altcoin? Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord BitMine verdubbelt inzet op Ethereum Om precies te zijn koopt BitMine 14.618 ETH munten erbij, goed voor dus $44 miljoen. Zo blijkt uit on-chain gegevens gedeeld door Lookonchain op X. Daarmee tilt de grote Ethereum treasury zijn voorraad naar maar liefst 3,63 miljoen ETH ter waarde van ruim $11 miljard, aldus data van StrategicETHReserve. Daarmee controleert het bedrijf nu 3% van alle Ethereum in omloop. Tom Lee(@fundstrat)’s #Bitmine just bought another 14,618 $ETH($44.34M) 4 hours ago.https://t.co/P684j5Yil8 pic.twitter.com/LHOpDto1R5 — Lookonchain (@lookonchain) November 28, 2025 De ambities liggen desondanks een stuk hoger: BitMine wil uiteindelijk 5% van de volledige ETH voorraad bezitten. Oftewel, we kunnen nog flink wat Ethereum aankopen verwachten van het bedrijf in de komende maanden. Door de aggresssieve ETH strategie van het bedrijf zijn ze bij uitstek de grootste Ethereum reserve. De nummer twee, SharpLink Gaming, bezit ongeveer 859.400 ETH munten ter waarde van zo’n $2,62 miljard. Deze agressieve uitbreiding volgt een duidelijke strategie. BitMine verwacht dat Ethereum een grotere rol in de tokenisatie. Bedrijven bezitten samen al bijna 5,01% van alle ETH, een signaal dat corporates zich voorbereiden op een toekomst waarin Ethereum een basislaag wordt voor financiële infrastructuur. Waarom BitMine zijn treasury blijft uitbreiden BitMine bouwt zijn treasury verder uit omdat het een dominante positie in het Ethereum netwerk wil innemen. Meer ETH geeft BitMine straks hogere staking-opbrengsten en meer invloed op de liquiditeit binnen het netwerk. Ook gelooft BMNR sterk in de rol van Ethereum in de toekomst van financiële infrastructuur. Bestuurslid Tom Lee verwacht dat ETH een dominante speler zal zijn in de stablecoin en tokenisatie markt. Beide sectoren zijn hard aan het groeien, mede dankzij duidelijke wet- en regelgeving onder de Trump administratie zoals de GENIUS Act. Daarnaast gelooft Tom Lee in een zogeheten supercycle voor ETH. Volgens de bekende top analist kan de grootste altcoin zelfs Bitcoin (BTC) voorbijstreven, allemaal dankzij grootschalige adoptie door tokenisatie. Als Ethereum de huidige marketcap van BTC wil evenaren dan zou de ETH koers al op ruim $15.000 komen. ETH en BMNR krabbelen langzaam op uit diepe dip De ethereum prijs reageerde vandaag beperkt op het nieuws. De altcoin steeg over de afgelopen 24 uur met 0,8% tot een huidige koers van $3.050. Daarmee zet de munt samen met de rest van de crypto markt een stijgende trend voort. Na een heftige crash in de afgelopen weken zakte de ETH koers vorige week vrijdag tot onder de $2.700. Ook het BMNR aandeel is langzaam aan het terugkrabbelen. Het ETH treasury bedrijf zakte vorige week tot $26. Een flinke crash ten opzichte van de all time high van $135 dat het bedrijf in juli van dit jaar nog wist te realiseren. De sterke daling van het BMNR aandeel valt samen met een algehele neerwaartse trend onder crypto treasury bedrijven. Ook Strategy, de grootste publieke Bitcoin houder, is ook flink lager aan het handelen vanaf zijn all time. Zo staat het MSTR aandeel momenteel op $175 tegenover een prijs record van $457 in juli. Ethereum (ETH) kopen op Bitvavo Bitvavo - grootste crypto exchange in Nederland Meer dan 340 beschikbare cryptocurrencies Lage transactiekosten Gemakkelijk via iDeal geld storten Professionele traders dashboard Bitvavo review Koop ETH op Bitvavo Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht BitMine koopt $44 miljoen aan ETH is geschreven door Thomas van Welsenes en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/11/28 20:31
The Next Bitcoin Story Of 2025

The Next Bitcoin Story Of 2025

The post The Next Bitcoin Story Of 2025 appeared on BitcoinEthereumNews.com. Crypto News 18 September 2025 | 07:39 Bitcoin’s rise from obscure concept to a global asset is the playbook every serious investor pores over, and it still isn’t done writing; Bitcoin now trades above $115,000, a reminder that the life-changing runs begin before most people are even looking. T The question hanging over this cycle is simple: can a new contender compress that arc, faster, cleaner, earlier, while the window is still open for those willing to move first? Coins still on presales are the ones can repeat this story, and among those coins, an Ethereum based meme coin catches most of the attention, as it’s team look determined to make an impact in today’s market, fusing culture with working tools, with a design built to reward early movers rather than late chasers. If you’re hunting the next asymmetric shot, this is where momentum and mechanics meet, which is why many traders quietly tag this exact meme coin as the best crypto to buy now in a crowded market. Before we dive deeper, take a quick rewind through the case study every crypto desk knows by heart: how Bitcoin went from about $0.0025 to above $100,000, and turned a niche experiment into the story that still sets the bar for everything that follows. Bitcoin 2010-2025 Price History Back to first principles: a strange internet money appears in 2010 and then, step by step, rewires the entire market, Bitcoin’s arc from about $0.0025 to above $100,000 is the case study every desk still cites because it proves one coin can move the entire game. In 2009 almost no one guessed the destination; launched on January 3, 2009, Bitcoin picked up a price signal in 2010 when the pizza trade valued BTC near $0,0025 while early exchange quotes lived at fractions of…
Share
BitcoinEthereumNews2025/09/18 12:41