Probabilistic Circuits (PCs) offer a unified framework for tractable probability distributions, enabling efficient probabilistic inference through structured computation graphs. Researchers are advancing their speed and scalability via GPU parallelization, tensorized designs, and even custom hardware like DAG Processing Units. With applications ranging from explainability and data compression to neuro-symbolic AI and large language model detoxification, PCs are emerging as a powerful foundation for the next wave of efficient, interpretable AI.Probabilistic Circuits (PCs) offer a unified framework for tractable probability distributions, enabling efficient probabilistic inference through structured computation graphs. Researchers are advancing their speed and scalability via GPU parallelization, tensorized designs, and even custom hardware like DAG Processing Units. With applications ranging from explainability and data compression to neuro-symbolic AI and large language model detoxification, PCs are emerging as a powerful foundation for the next wave of efficient, interpretable AI.

Why Researchers Are Betting on PCs to Power the Next Wave of AI

2025/08/25 07:10

Abstract and 1. Introduction

  1. Preliminaries and Related Work

  2. Key Bottlenecks in PC Parallelization

  3. Harnessing Block-Based PC Parallelization

    4.1. Fully Connected Sum Layers

    4.2. Generalizing To Practical Sum Layers

    4.3. Efficient Implementations by Compiling PC Layers

    4.4. Analysis: IO and Computation Overhead

  4. Optimizing Backpropagation with PC Flows

  5. Experiments

    6.1. Faster Models with PyJuice

    6.2. Better PCs At Scale

    6.3. Benchmarking Existing PCs

  6. Conclusion, Acknowledgements, Impact Statement, and References

A. Algorithm Details

B. Additional Technical Details

C. Experimental Details

D. Additional Experiments

\

2. Preliminaries and Related Work

Many probabilistic inference tasks can be cast into computing sums of products. By viewing them from a computation graph standpoint, PCs provide a unified perspective on many bespoke representations of tractable probability distributions, including Arithmetic Circuits (Darwiche, 2002; 2003), Sum-Product Networks (Poon & Domingos, 2011), Cutset Networks (Rahman et al., 2014), and Hidden Markov Models (Rabiner & Juang, 1986). Specifically, PCs define distributions with computation graphs consisting of sum and product operations, as elaborated below.

\

\ The key to guaranteeing exact and efficient computation of various probabilistic queries is to impose proper structural constraints on the DAG of the PC. As an example, with smoothness and decomposability (Poon & Domingos, 2011), computing any marginal probability amounts to a forward pass (children before parents) following Equation (1), with the only exception that we set the value of input nodes defined on marginalized variables to be 1. Please refer to Choi et al. (2020) for a comprehensive overview of different structural constraints and what queries they enable.

\

\ For example, Peharz et al. (2020a) demonstrate how the above parameter gradients can be used to apply ExpectationMaximization (EM) updates, and Vergari et al. (2021) elaborates how the forward pass can be used to compute various probabilistic and information-theoretic queries when coupled with PC structure transformation algorithms. Therefore, the speed and memory efficiency of these two procedures largely determine the overall efficiency of PCs.

\ Figure 1. Layering a PC by grouping nodes with the same topological depth (as indicated by the colors) into disjoint subsets. Both the forward and the backward computation can be carried out independently on nodes within the same layer.

\ Related work on accelerating PCs. There has been a great amount of effort put into speeding up training and inference for PCs. One of the initial attempts performs nodebased computations on both CPUs (Lowd & Rooshenas, 2015) and GPUs (Pronobis et al., 2017; Molina et al., 2019), i.e., by computing the outputs for a mini-batch of inputs (data) recursively for every node. Despite its simplicity, it fails to fully exploit the parallel computation capability possessed by modern GPUs since it can only parallelize over a batch of samples. This problem is mitigated by also parallelizing topologically independent nodes (Peharz et al., 2020a; Dang et al., 2021). Specifically, a PC is chunked into topological layers, where nodes in the same layer can be computed in parallel. This leads to 1-2 orders of magnitude speedup compared to node-based computation.

\ The regularity of edge connection patterns is another key factor influencing the design choices. Specifically, EiNets (Peharz et al., 2020a) leverage off-the-shelf Einsum operations to parallelize dense PCs where every layer contains groups of densely connected sum and product/input nodes. Mari et al. (2023) generalize the notion of dense PCs to tensorized PCs, which greatly expands the scope of EiNets. Dang et al. (2021) instead focus on speeding up sparse PCs, where different nodes could have drastically different numbers of edges. They use custom CUDA kernels to balance the workload of different GPU threads and achieve decent speedup on both sparse and dense PCs.

\ Another thread of work focuses on designing computation hardware that is more suitable for PCs. Specifically, Shah et al. (2021) propose DAG Processing Units (DPUs) that can efficiently traverse sparse PCs, Dadu et al. (2019) introduce an indirect read reorder-buffer to improve the efficiency of data-dependent memory accesses in PCs, and Yao et al. (2023) use addition-as-int multiplications to significantly improve the energy efficiency of PC inference algorithms.

\ Figure 2. Runtime breakdown of the feedforward pass of a PC with ∼150M edges. Both the IO and the computation overhead of the sum layers are significantly larger than the total runtime of product layers. Detailed configurations of the PC are shown in the table.

\ Applications of PCs. PCs have been applied to many domains such as explainability and causality (Correia et al., 2020; Wang & Kwiatkowska, 2023), graph link prediction (Loconte et al., 2023), lossless data compression (Liu et al., 2022), neuro-symbolic AI (Xu et al., 2018; Manhaeve et al., 2018; Ahmed et al., 2022a;b), gradient estimation (Ahmed et al., 2023b), graph neural networks rewiring (Qian et al., 2023), and even large language model detoxification (Ahmed et al., 2023a).

\

:::info Authors:

(1) Anji Liu, Department of Computer Science, University of California, Los Angeles, USA (liuanji@cs.ucla.edu);

(2) Kareem Ahmed, Department of Computer Science, University of California, Los Angeles, USA;

(3) Guy Van den Broeck, Department of Computer Science, University of California, Los Angeles, USA;

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BitMine koopt $44 miljoen aan ETH

BitMine koopt $44 miljoen aan ETH

De grootste Ethereum (ETH) treasury ter wereld, BitMine Immersion Technologies, heeft weer toegeslagen op de crypto markt. Uit on-chain data blijkt dat BitMine, ook bekend onder het ticker symbool BMNR, voor $44 miljoen aan ETH munten heeft gekocht. Wat betekent dit voor de grootste altcoin? Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord BitMine verdubbelt inzet op Ethereum Om precies te zijn koopt BitMine 14.618 ETH munten erbij, goed voor dus $44 miljoen. Zo blijkt uit on-chain gegevens gedeeld door Lookonchain op X. Daarmee tilt de grote Ethereum treasury zijn voorraad naar maar liefst 3,63 miljoen ETH ter waarde van ruim $11 miljard, aldus data van StrategicETHReserve. Daarmee controleert het bedrijf nu 3% van alle Ethereum in omloop. Tom Lee(@fundstrat)’s #Bitmine just bought another 14,618 $ETH($44.34M) 4 hours ago.https://t.co/P684j5Yil8 pic.twitter.com/LHOpDto1R5 — Lookonchain (@lookonchain) November 28, 2025 De ambities liggen desondanks een stuk hoger: BitMine wil uiteindelijk 5% van de volledige ETH voorraad bezitten. Oftewel, we kunnen nog flink wat Ethereum aankopen verwachten van het bedrijf in de komende maanden. Door de aggresssieve ETH strategie van het bedrijf zijn ze bij uitstek de grootste Ethereum reserve. De nummer twee, SharpLink Gaming, bezit ongeveer 859.400 ETH munten ter waarde van zo’n $2,62 miljard. Deze agressieve uitbreiding volgt een duidelijke strategie. BitMine verwacht dat Ethereum een grotere rol in de tokenisatie. Bedrijven bezitten samen al bijna 5,01% van alle ETH, een signaal dat corporates zich voorbereiden op een toekomst waarin Ethereum een basislaag wordt voor financiële infrastructuur. Waarom BitMine zijn treasury blijft uitbreiden BitMine bouwt zijn treasury verder uit omdat het een dominante positie in het Ethereum netwerk wil innemen. Meer ETH geeft BitMine straks hogere staking-opbrengsten en meer invloed op de liquiditeit binnen het netwerk. Ook gelooft BMNR sterk in de rol van Ethereum in de toekomst van financiële infrastructuur. Bestuurslid Tom Lee verwacht dat ETH een dominante speler zal zijn in de stablecoin en tokenisatie markt. Beide sectoren zijn hard aan het groeien, mede dankzij duidelijke wet- en regelgeving onder de Trump administratie zoals de GENIUS Act. Daarnaast gelooft Tom Lee in een zogeheten supercycle voor ETH. Volgens de bekende top analist kan de grootste altcoin zelfs Bitcoin (BTC) voorbijstreven, allemaal dankzij grootschalige adoptie door tokenisatie. Als Ethereum de huidige marketcap van BTC wil evenaren dan zou de ETH koers al op ruim $15.000 komen. ETH en BMNR krabbelen langzaam op uit diepe dip De ethereum prijs reageerde vandaag beperkt op het nieuws. De altcoin steeg over de afgelopen 24 uur met 0,8% tot een huidige koers van $3.050. Daarmee zet de munt samen met de rest van de crypto markt een stijgende trend voort. Na een heftige crash in de afgelopen weken zakte de ETH koers vorige week vrijdag tot onder de $2.700. Ook het BMNR aandeel is langzaam aan het terugkrabbelen. Het ETH treasury bedrijf zakte vorige week tot $26. Een flinke crash ten opzichte van de all time high van $135 dat het bedrijf in juli van dit jaar nog wist te realiseren. De sterke daling van het BMNR aandeel valt samen met een algehele neerwaartse trend onder crypto treasury bedrijven. Ook Strategy, de grootste publieke Bitcoin houder, is ook flink lager aan het handelen vanaf zijn all time. Zo staat het MSTR aandeel momenteel op $175 tegenover een prijs record van $457 in juli. Ethereum (ETH) kopen op Bitvavo Bitvavo - grootste crypto exchange in Nederland Meer dan 340 beschikbare cryptocurrencies Lage transactiekosten Gemakkelijk via iDeal geld storten Professionele traders dashboard Bitvavo review Koop ETH op Bitvavo Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht BitMine koopt $44 miljoen aan ETH is geschreven door Thomas van Welsenes en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/11/28 20:31
The Next Bitcoin Story Of 2025

The Next Bitcoin Story Of 2025

The post The Next Bitcoin Story Of 2025 appeared on BitcoinEthereumNews.com. Crypto News 18 September 2025 | 07:39 Bitcoin’s rise from obscure concept to a global asset is the playbook every serious investor pores over, and it still isn’t done writing; Bitcoin now trades above $115,000, a reminder that the life-changing runs begin before most people are even looking. T The question hanging over this cycle is simple: can a new contender compress that arc, faster, cleaner, earlier, while the window is still open for those willing to move first? Coins still on presales are the ones can repeat this story, and among those coins, an Ethereum based meme coin catches most of the attention, as it’s team look determined to make an impact in today’s market, fusing culture with working tools, with a design built to reward early movers rather than late chasers. If you’re hunting the next asymmetric shot, this is where momentum and mechanics meet, which is why many traders quietly tag this exact meme coin as the best crypto to buy now in a crowded market. Before we dive deeper, take a quick rewind through the case study every crypto desk knows by heart: how Bitcoin went from about $0.0025 to above $100,000, and turned a niche experiment into the story that still sets the bar for everything that follows. Bitcoin 2010-2025 Price History Back to first principles: a strange internet money appears in 2010 and then, step by step, rewires the entire market, Bitcoin’s arc from about $0.0025 to above $100,000 is the case study every desk still cites because it proves one coin can move the entire game. In 2009 almost no one guessed the destination; launched on January 3, 2009, Bitcoin picked up a price signal in 2010 when the pizza trade valued BTC near $0,0025 while early exchange quotes lived at fractions of…
Share
BitcoinEthereumNews2025/09/18 12:41