Author: Haotian After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac . What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy: Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services. FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization. While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them. FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio. Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development. Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue. The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up. Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown. However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues. I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.Author: Haotian After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac . What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy: Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services. FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization. While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them. FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio. Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development. Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue. The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up. Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown. However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues. I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.

A brief review of FLock's AI launchpad: Is the path of "issuing assets" to large models viable?

2025/11/21 17:59
3 min read

Author: Haotian

After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac .

What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy:

Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services.

FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization.

While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them.

FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio.

Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development.

Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue.

The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up.

Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown.

However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues.

I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.

Market Opportunity
FLock.io Logo
FLock.io Price(FLOCK)
$0.06126
$0.06126$0.06126
-0.80%
USD
FLock.io (FLOCK) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

The post Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment? appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 17:39 Is dogecoin really fading? As traders hunt the best crypto to buy now and weigh 2025 picks, Dogecoin (DOGE) still owns the meme coin spotlight, yet upside looks capped, today’s Dogecoin price prediction says as much. Attention is shifting to projects that blend culture with real on-chain tools. Buyers searching “best crypto to buy now” want shipped products, audits, and transparent tokenomics. That frames the true matchup: dogecoin vs. Pepeto. Enter Pepeto (PEPETO), an Ethereum-based memecoin with working rails: PepetoSwap, a zero-fee DEX, plus Pepeto Bridge for smooth cross-chain moves. By fusing story with tools people can use now, and speaking directly to crypto presale 2025 demand, Pepeto puts utility, clarity, and distribution in front. In a market where legacy meme coin leaders risk drifting on sentiment, Pepeto’s execution gives it a real seat in the “best crypto to buy now” debate. First, a quick look at why dogecoin may be losing altitude. Dogecoin Price Prediction: Is Doge Really Fading? Remember when dogecoin made crypto feel simple? In 2013, DOGE turned a meme into money and a loose forum into a movement. A decade on, the nonstop momentum has cooled; the backdrop is different, and the market is far more selective. With DOGE circling ~$0.268, the tape reads bearish-to-neutral for the next few weeks: hold the $0.26 shelf on daily closes and expect choppy range-trading toward $0.29–$0.30 where rallies keep stalling; lose $0.26 decisively and momentum often bleeds into $0.245 with risk of a deeper probe toward $0.22–$0.21; reclaim $0.30 on a clean daily close and the downside bias is likely neutralized, opening room for a squeeze into the low-$0.30s. Source: CoinMarketcap / TradingView Beyond the dogecoin price prediction, DOGE still centers on payments and lacks native smart contracts; ZK-proof verification is proposed,…
Share
BitcoinEthereumNews2025/09/18 00:14
XRPL Validator Reveals Why He Just Vetoed New Amendment

XRPL Validator Reveals Why He Just Vetoed New Amendment

Vet has explained that he has decided to veto the Token Escrow amendment to prevent breaking things
Share
Coinstats2025/09/18 00:28
US Senate Democrats plan to restart discussions on a cryptocurrency market structure bill later today.

US Senate Democrats plan to restart discussions on a cryptocurrency market structure bill later today.

PANews reported on February 4th that, according to Crypto In America, US Senate Democrats plan to reconvene on the afternoon of February 4th to discuss legislation
Share
PANews2026/02/04 23:12