Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.

Building Smarter Cyber Ranges with Dockerized Android

2025/10/17 05:15

:::info Authors:

(1) Daniele Capone, SecSI srl, Napoli, Italy (daniele.capone@secsi.io);

(2) Francesco Caturano, Dept. of Electrical Engineering and Information, Technology University of Napoli Federico II, Napoli, Italy (francesco.caturano@unina.i)

(3) Angelo Delicato, SecSI srl, Napoli, Italy (angelo.delicato@secsi.io);

(4) Gaetano Perrone, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy (gaetano.perrone@unina.it)

(5) Simon Pietro Romano, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy (spromano@unina.it).

:::

Abstract and I. Introduction

II. Related Work

III. Dockerized Android: Design

IV. Dockerized Android Architecture

V. Evaluation

VI. Conclusion and Future Developments, and References

VI. CONCLUSION AND FUTURE DEVELOPMENTS

In this work, we have described Dockerized Android, a platform that supports cyber-range designers in realizing mobile virtual scenarios. The application is based on Docker, i.e., a container-based virtualization framework extensively adopted in the cyber-range field for several benefits already mentioned. We described the main components and showed how it is possible to realize a complex cyber kill-chain scenario that involves the utilization of Bluetooth components. The architecture has been conceived at the outset as an extensible one. Its feature set can be dynamically enabled or disabled through the docker-compose creator, and some fine-grained options can be configured to customize the scenarios. The strength of this system is its ability to quickly run a mobile component through Docker, with many interesting features out of the box. Furthermore, the centralization of several components increases the overall usability level. The cons are all related to compatibility issues with Windows and OS X when running the Core for Emulator. While the former will probably be solved with the next updates, the latter is not solvable without significant changes to the OS X implementation. Another limitation is the lack of support for emulating some hardware components, e.g., Bluetooth. For these reasons, the Linux environment as a host machine is strongly recommended. We will also assess the potential benefits of using Dockerized Android in cloud-based environments in future works. Other improvements include the full integration of security-based features in the Android Emulator. For example, the GPS location could be useful to simulate a realistic route traveled by a simulated user. In recent works, cyber ranges are configured by using the high-level SDL (Specification and Description Language) representation [8]. Integrating this language in Dockerized Android is relatively easy, as every feature is set through Docker environment variables. Additional efforts will be focused on improving automation features, such as the design of an event-based architecture to simulate complex sequential actions involving human interaction.

REFERENCES

[1] Jan Vykopal et al. “Lessons learned from complex hands-on defence exercises in a cyber range”. In: 2017 IEEE Frontiers in Education Conference (FIE). 2017, pp. 1–8. DOI: 10.1109/FIE.2017.8190713.

\ [2] Adam McNeil and W. Stuart Jones. Mobile Malware is Surging in Europe: A Look at the Biggest Threats. https://www.proofpoint.com/us/blog/email-and-cloudthreats/mobile-malware- surging-europe-look- biggestthreats. Online; 14-May-2022. 2022.

\ [3] René Mayrhofer et al. “The Android Platform Security Model”. In: ACM Transactions on Privacy and Security 24.3 (Aug. 2021), pp. 1–35. DOI: 10 . 1145/ 3448609. URL: https://doi.org/10.1145/3448609.

\ [4] Ryotaro Nakata and Akira Otsuka. “CyExec*: A HighPerformance Container-Based Cyber Range With Scenario Randomization”. In: IEEE Access 9 (2021), pp. 109095–109114. DOI: 10 . 1109 / ACCESS . 2021 . 3101245.

\ [5] Ryotaro Nakata and Akira Otsuka. Evaluation of vulnerability reproducibility in container-based Cyber Range. 2020. DOI: 10.48550/ARXIV.2010.16024. URL: https: //arxiv.org/abs/2010.16024.

\ [6] Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. “Capturing flags in a dynamically deployed microservices-based heterogeneous environment”. In: 2020 Principles, Systems and Applications of IP Telecommunications (IPTComm). 2020, pp. 1–7. DOI: 10.1109/IPTComm50535.2020.9261519.

\ [7] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos. “Cyber ranges and security testbeds: Scenarios, functions, tools and architecture”. In: Computers & Security 88 (Jan. 2020), p. 101636. DOI: 10. 1016/ J. COSE.2019.101636.

\ [8] Enrico Russo, Luca Verderame, and Alessio Merlo. “Enabling Next-Generation Cyber Ranges with Mobile Security Components”. In: IFIP International Conference on Testing Software and Systems. Springer, 2020, pp. 150–165.

\ [9] Giuseppe Trotta Andrea Pierini. From APK to Golden Ticket. https://www.exploit-db.com/docs/english/44032- from- apk-to- golden-ticket.pdf. [Online; accessed 01- March-2021]. 2017.

\ [10] Genymotion. Android as a Service. https : / / www . genymotion.com/. [Online; accessed 1-March-2021].

\ [11] Corellium. ARM Device Virtualization. https : / / corellium.com/. [Online; accessed 10-March-2021].

\ [12] Android Emulator. https : / / developer . android . com / studio/run/emulator. Accessed: 11-01-2021.

\ [13] thyrlian. AndroidSDK. https : / / github . com / thyrlian / AndroidSDK. [Online; accessed 10-March-2021].

\ [14] budtmo. docker-android. https:// github. com/ budtmo/ docker-android. [Online; accessed 10-March-2021].

\ [15] bitrise-io. android. https://github.com/bitrise-io/android. [Online; accessed 10-March-2021].

\ [16] MobSF. Mobile Security Framework. https : / / www . github . com / MobSF / Mobile - Security - Framework - MobSF. [Online; accessed 1-March-2021].

\ [17] Dockerfile best practices. https : / / docs . docker. com / develop / develop - images / dockerfile _ best - practices/. Accessed: 13-02-2021.

\ [18] Flaticon. Free vector icons. https://www.flaticon.com/. [Online; accessed 17-April-2021].

\ [19] Frida. Frida. https://frida.re/. Online; 13-May-2022.

\ [20] Anonymized authors. Dockerized Android github repo. . In order to adhere to the double-blind review principle, the github repo information has been obfuscated and will be made available if and when the paper is accepted.

\ [21] Android-Exploits. https : / / github . com / sundaysec / Android - Exploits / blob / master / remote / 44242 . md. [Online; accessed 19-April-2021].

\ [22] Ben Seri and Gregory Vishnepolsky. BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day vulnerabilities and security flaws in modern Bluetooth stacks. Tech. rep. Armis, 2017.

\ [23] Armis Security. BlueBorne. https://www.armis.com/ research/blueborne/. Online; 13-May-2022. 2017.

\

:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sahrealike 4.0 International license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Ethereum Foundation Moves Entire $650M+ Treasury to Safe Multisig

Ethereum Foundation Moves Entire $650M+ Treasury to Safe Multisig

The post Ethereum Foundation Moves Entire $650M+ Treasury to Safe Multisig appeared on BitcoinEthereumNews.com. EF completes full treasury migration to Safe smart accounts, joining Vitalik Buterin as key Safe user + Safe smart accounts cross 750M transactions milestone.   The Ethereum Foundation has completed the migration of its full treasury, over 160,000 ETH worth approximately $650 million to Safe{Wallet}, following months of successful DeFi testing. Safe{Wallet}, operated by Safe Labs (a fully owned subsidiary of the Safe Foundation), is the crypto industry’s trusted smart account standard for multisig wallets, securing billions of dollars in assets for institutions, DAOs, and projects. The move follows the Foundation’s June 2025 treasury policy announcement, which committed to actively participating in Ethereum’s DeFi ecosystem. Since February, the EF had been testing Safe with a separate DeFi-focused account, dogfooding protocols including Aave, Cowswap, and Morpho as part of their strategy to support applications built on Ethereum. After testing a 3-of-5 multisig configuration on January 20th, the Foundation has now consolidated its remaining ETH holdings into Safe, completing the transition from their previous custom-built multisig solution. This implementation enables the Ethereum Foundation to actively participate in DeFi via Safe while maintaining battle-tested security standards, marking another step toward Safe’s vision of moving the world’s GDP onchain through battle-tested self-custody infrastructure. “Safe has proven safe and has a great user experience, and we will transfer more of our funds here over time,” the Ethereum Foundation announced, indicating this is the beginning of a deeper commitment to the Safe smart account standard. Safe’s Momentum The timing is notable: Safe has just crossed 750 million transactions (751,062,286 as of today) with over 57.5 million Safes created across multiple chains. The protocol has emerged as crypto’s de facto standard for multisig wallets, securing billions in institutional and DAO treasuries. Safe also counts Ethereum co-founder Vitalik Buterin among its prominent users, who revealed in May 2024 that…
Share
2025/10/23 04:15
Share
Citadel’s Stake in Solana Treasury Firm DeFi Dev Corp Highlights Potential Crypto Exposure

Citadel’s Stake in Solana Treasury Firm DeFi Dev Corp Highlights Potential Crypto Exposure

The post Citadel’s Stake in Solana Treasury Firm DeFi Dev Corp Highlights Potential Crypto Exposure appeared on BitcoinEthereumNews.com. COINOTAG recommends • Exchange signup 💹 Trade with pro tools Fast execution, robust charts, clean risk controls. 👉 Open account → COINOTAG recommends • Exchange signup 🚀 Smooth orders, clear control Advanced order types and market depth in one view. 👉 Create account → COINOTAG recommends • Exchange signup 📈 Clarity in volatile markets Plan entries & exits, manage positions with discipline. 👉 Sign up → COINOTAG recommends • Exchange signup ⚡ Speed, depth, reliability Execute confidently when timing matters. 👉 Open account → COINOTAG recommends • Exchange signup 🧭 A focused workflow for traders Alerts, watchlists, and a repeatable process. 👉 Get started → COINOTAG recommends • Exchange signup ✅ Data‑driven decisions Focus on process—not noise. 👉 Sign up → Citadel’s investment in DeFi Dev Corp represents a 4.5% stake held by the firm, with CEO Ken Griffin owning another 4.5%, totaling significant exposure to Solana treasury operations through this leading DAT company. Citadel and subsidiaries control over 9% of DeFi Dev Corp shares, highlighting hedge fund interest in Solana-based treasuries. DeFi Dev Corp has increased its SOL per share by 375% since initial acquisitions. Solana treasuries now hold 20.31 million SOL, with 9 million staked for an average 7.7% yield. Discover Citadel’s 4.5% stake in DeFi Dev Corp and its impact on Solana treasuries. Explore SOL holdings growth and market insights for informed crypto investment decisions today. What is Citadel’s Stake in DeFi Dev Corp? Citadel’s investment in DeFi Dev Corp includes a 4.5% ownership through the firm itself, complemented by an additional 4.5% held directly by CEO Ken Griffin. This positions Citadel among the top shareholders in the Solana-focused treasury company. Various Citadel subsidiaries, such as Citadel Advisors LLC and Citadel Securities LLC, contribute further stakes totaling around 6%, as detailed in a recent ownership report. COINOTAG…
Share
2025/10/23 03:57
Share